Kategorien
Ernährung Kraft

Proteinreiche Lebensmittel. Welche Lebensmittel enthalten viel Protein?

Welche proteinreiche Lebensmittel gibt es?

Eiweiß, oder auch Protein sorgt für Muskelwachstum im Körper und kurbelt den Fettabbau an. Um den Körper optimal mit Eiweiß zu versorgen benötigt dieser proteinreiche Lebensmittel.

Proteinreiche Lebensmittel als Basis für eine gesunde Ernährung

Genau wie Fette und Kohlenhydrate, zählen auch Proteine zu den sogenannten Makronährstoffen. Die großen Moleküle sind aus vielen, einzelnen Aminosäuren aufgebaut, und wenn Proteine konsumiert werden, so werden diese während der Verdauung in einzelne Aminosäuren zerlegt. Das hilft dem Körper seine eigenes Protein aufzubauen. Proteine für unser Bindegewebe, die Haare und Nägel, Hormone und sogar Antikörper werden gebildet.

Proteinreiche Lebensmittel in welcher Menge?

Essen wir nicht genügend proteinreiche Lebensmittel, so kann der Körper Mängel aufweisen. Ca. 0,8 bis 1g Protein soll man pro Kilogramm Körpergewicht zu sich nehmen und muss keinen Proteinüberschuss befürchten.

Wer also nicht mit Nahrungsergänzungsmitteln oder Proteinpulvern nachhelfen möchte, sollte folgende proteinreiche Lebensmittel unbedingt in den Speiseplan einbauen.

Eier

In einem Ei sind sieben Gramm Eiweiß und sind somit für Sportler der Inbegriff eines proteinreichen Lebensmittels. Auch kann unser Körper das Eiweiß in reine Muskelmasse umwandeln. Viele Sportler schwören auf diese Art von Eiweißzufuhr und essen in regelmäßigen Abständen große Mengen davon.

Lachs und Thunfisch

Auch Lachs und Thunfisch enthalten sehr viel Eiweiß. 150g Thunfisch enthält zum Beispiel 35g Eiweiß. Das macht pro 100g, 20g Eiweiß!

Thunfisch ist optimal für den Aufbau von Muskelmasse geeignet und liefert wie auch Lachs viel Protein. Lachs versorgt den Körper übrigens zusätzlich auch mit mit ungesättigten Fettsäuren, den wertvollen Omega-3-Fettsäuren. Genau wie mit Vitamin A, B1, B6 und B12 sowie Selen und Zink.

Hülsenfrüchte

Sojabohnen, Linsen, Kichererbsen oder die geläufigen Kernbohnen sind äussert proteinreiche Lebensmittel. Sie enthalten – ebenfalls gekocht – 9 g Protein.

Auch gekochte Erbsen, mit 6 – 7g pro 100g sind großartige Proteinlieferanten für unseren Körper. Weiterhin sind Kalium und Eisen sowie Vitamin B1 und Carotinoide in den Erbsen enthalten.

Sojaprodukte

Sojaprodukte sind wahre Eiweißwunder. So ist der Proteingehalt eines Sojadrinks mit dem von Kuhmilch vergleichbar. Man muss also nicht große Mengen an Soja zu sich nehmen, um Protein dem Körper zuzuführen. Besonders Veganer und Vegetarier dürfen sich hier freuen, da es eine großartige Alternative zu tierischem Eiweiß darstellt.

Fleisch

Nicht nur Fisch, auch Fleisch ist eine tolle Eiweißquelle. Pouletbrust zum Beispiel, liefert 30 g Protein bei 125g Fleisch. Poulet hat zudem wenig Fett und ist somit bei Sportlern sehr beliebt. Das im Fleisch enthaltene B6 unterstützt den menschlichen Eiweißstoffwechsel und ist somit ein oft unterschätzter Nebeneffekt.

Rindfleisch enthält auch 27 g Protein bei 150 g und kann durch eine hohe biologische Wertigkeit sehr gut in körpereigenes Eiweiß umgewandelt werden.

Proteine können also wunderbar auch ohne Proteinpulver dem Körper zugeführt werden. Wer dennoch gerne zusätzliches Protein zu sich nehmen möchte, der hat eine große Auswahl an Protein Shakes und Supplementen in unserem Sortiment. Diese Produkte bieten wir im besten Preis-Leistungs-Verhältnis an.

Kategorien
Ausdauer Fitness

Signalwege der Anpassung an Ausdauertraining

Signalwege der Anpassung an das Ausdauertraining

Jeder weiss, dass regelmässiges Ausdauertraining zur Verbesserung der Ausdauerfähigkeit führt. Doch welche Anpassung an das Ausdauertraining können im Körper erwartet werden. Wir klären dich auf in diesem Blog.

Regelmässige, trainingsinduzierte Reize verbessern jeweils verschiedene Komponenten der Ausdauerfähigkeit. Diese Anpassungen an das Ausdauertraining finden einerseits zentral (Verbesserung des Herzminutenvolumens) und andererseits peripher in der Arbeitsmuskulatur (Muskelfaserverteilung, Mitochondriendichte, Kapillarisierung) statt. Dabei ist vor allem zu beachten, dass die zentralen Adaptationen unabhängig vom gewählten Trainingsmittel verbessert werden, die peripheren Anpassungen dagegen vorwiegend in der eingesetzten Muskulatur stattfinden. Aufgrund dessen sollte die Wahl des Trainingsmittels gut überlegt und vor allem dem individuellen Ziel angepasst sein.
Wie es durch die verschiedenen Arten des Ausdauertrainings zu spezifischen Anpassungen kommt und wie diese zum Teil, durch eine geeignete Wahl der Trainingsmethode, bewusst gesteuert werden können ist Teil der sportphysiologischen Forschung und wird hier in einem kurzen Überblick, für das grobe Verständnis zusammengefasst.

1. Anpassung an das Ausdauertraining: Athletenherz oder pathologische kardiale Hypertrophie.

Die Hauptkomponente der zentralen Anpassung durch Ausdauertraining ist eine vorwiegend strukturelle Veränderung des Herzmuskels. Diese Veränderungen können einerseits positiv (Athletenherz) und andererseits auch negativ (hypertrophe Kardiomyopathie) ausfallen. Beim Athletenherz vergrössert sich vorwiegend der linke Ventrikel und die Herzmuskelwand verdickt sich dazu im richtigen Verhältnis, was Netto zu einem vergrösserten Schlagvolumen führt (das Herz kann pro Schlag mehr Blutvolumen auswerfen). Beim Herzkranken Patienten dagegen (z.B. durch eine Aortenstenose oder eine langjährige Hypertonie) nimmt die Wanddicke auf Kosten des Ventrikelvolumens stark zu, was schlussendlich zu einem verringerten Schlagvolumen führt und nach einer meist langjährigen Herzinsuffizienz, durch Versagen des Herzmuskels, im Herztod endet.
Wie zu erwarten führen zwei verschiedene molekulare Signalwege zu den erwähnten Anpassungen am Herzmuskel. Vor allem wiederholte Intervalle von intensiven Ausdauerbelastungen führen durch Erhöhung der Konzentrationen von PI3K und anschliessend PKB/Akt und Erniedrigung des C/EBPbeta Signalweges zu einer physiologischen Hypertrophie der Herzmuskelzellen. Die pathologische kardiale Hypertrophie dagegen beruht vorwiegend auf einem gesteigertem Calcineurin Signal.
Vielleicht wird es früher oder später möglich sein, auf diese Signalwege mittels Medikamenten oder genetischen Methoden einen direkten Einfluss auszuüben.

Sicher ist jedoch die Möglichkeit der Einflussnahme durch wiederholtes intensives Ausdauertraining oder das Beheben von den begünstigenden Faktoren für eine hypertrophe Kardiomyopathie (Blutdruckregulation, Aortenstenosenoperation usw.)

2. Anpassung an das Ausdauertraining: Anpassungen in der Muskelfaserverteilung.

Eine wichtige strukturelle Komponente auf muskulärer Ebene für die Ausdauerleistungsfähigkeit ist die Muskelfaserverteilung. Grundsätzlich lassen sich die menschlichen Skelettmuskelfasern in langsam kontrahierende Typ 1 und schnellkontrahierende Typ 2a (schnell) und Typ 2x (sehr schnell) Fasern einteilen. Die Namen dieser Einteilung basieren auf den schweren Myosinketten, welche vor allem in Skelettmuskelfasern exprimiert werden. Typ 2x Fasern exprimieren zum Beispiel vorwiegend schwere Myosinketten vom 2x Typ.
Es konnte diesbezüglich gezeigt werden, dass in Typ 1 Muskelfasern vorwiegend der Calcineurin-NFAT Signalweg induziert wird. Wird dieses Signal durch einen spezifischen Inhibitor abgeschwächt, verkleinert sich das Verhältnis der Typ1 zu den Typ2 Fasern. Dieses Signal wird ausserdem durch langanhaltende elektrische Stimulation in Modellorganismen gesteigert, was einen Zusammenhang der Muskelfaserverteilung mit körperlichem Training indiziert. Zu den Typ 2 Fasern konnte einen durch Ausdauertraining induzierten Wechsel von Typ 2x auf Typ 2a Fasern gefunden werden, was eine leichte Verlangsamung auf Faserebene vermuten lässt. Insgesamt wird der Muskel durch trainingsinduzierte Reize natürlich nicht langsamer. Einen Wechsel von Typ1 auf Typ2 Fasern und umgekehrt kann theoretisch durch jahrelanges Training begünstigt werden, die Evidenz dafür ist jedoch sehr limitiert, was keine definitive Aussage ermöglicht.
Was dagegen mit Sicherheit gezeigt werden konnte, ist das gegenseitige Unterdrücken der Genexpression der einzelnen schweren Myosinkettentypen untereinander. Dies erklärt die Tatsache, dass in einem gewissen Muskelfasertyp jeweils nur ein Typ der schweren Myosinketten exprimiert und alle anderen unterdrückt werden.

3. Anpassung an das Ausdauertraining: Trainingsinduzierte mitochondriale Biogenese.

Regelmässiges Ausdauertraining führt mit der Zeit zu einer Erhöhung der Dichte an Mitochondrien im Muskel. Diese Anpassung an das Ausdauertraining wird mitochondriale Biogenese genannt und kann grundsätzlich mit zwei Signalwegen erklärt werden. Langanhaltendes langsames Ausdauertraining führt durch die Freisetzung von Kalzium zu einer Aktivierung von CaMK. Während eines hochintensiven Intervalltrainings (HIIT) werden dagegen von AMPK die tiefen Konzentrationen von AMP und ADP registriert. Diese registriert ausserdem den Abfall des Glykogens.
AMPK und CaMK steigern die Expression des Transkriptionsfaktors PGC-1alpha, welcher seinerseits mittels Expressionssteigerung der nukleären und mitochondrialen DNA die mitochondriale Biogenese verbessert.

4. Anpassung an das Ausdauertraining: Trainingsinduzierte Angiogenese.

Ein leistungslimitierender Faktor in Ausdauersportarten ist wie bereits beschrieben neben der maximalen Sauerstoffaufnahme auch die periphere Sauerstoffverwertung. Diesbezüglich ist vor allem die Dichte des muskulären Kapillarnetzes von zentraler Bedeutung.
Über den CaMK/AMPK-PGC-1alpha Signalweg, hypoxieinduziertes-HIF-1 und scherstressinduziertes-NO werden angiogene Wachsumsfaktoren (fördern das Kapillarwachstum) heraufreguliert. Einer der wichtigsten dieser Faktoren ist VEGF (vascular endothelial growth factor).
Ausserdem wird durch Ausdauertraining die Expression von Metalloproteinasen gesteigert, welche die extrazelluläre Matrix für ein Aussprossen der Kapillaren, durch das Bilden von Tunnels vorbereiten.

Zusammenfassung

Wie oben beschrieben können grundsätzlich 4 Anpassungen an das Ausdauertraining erwartet werden:

  1. Anpassung des Herzens: Vergrösserung der linke Herzkammer und der Herzmuskelwand. Dies führt zu einem vergrösserten Schlagvolumen.
  2. Anpassungen in der Muskelfaserverteilung: Die Muskelfasern werden ausdauernder (Veränderung von Typ IIx zu Typ IIa)
  3. Mitochondriale Biogenese: Erhöhung der Dichte an Mitochondrien im Muskel. Die Mitochondrien sind die Kraftwerke der Zellen.
  4. Angiogenese: Erhöhung der Dichte des muskulären Kapillarnetzes. Die Kapillaren sind feinste Verzweigungen der Blutgefässe).

Sportnahrung kaufen

Quellen

  • Wackerhage H. Molecular Exercise Physiology. Abingdon: Routledge; 2014. 24-30, 52-65, 79-111, 133-151 p.
  • Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W. Athlete’s heart: Right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol. 2002;40(10):1856–63.
  • Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol Ther [Internet]. 2010;128(1):191–227. Available from: http://dx.doi.org/10.1016/j.pharmthera.2010.04.005
  • Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T, Franke TF, et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol. 2002;22(8):2799–809.
  • DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, et al. Akt1 is required for physiological cardiac growth. Circulation. 2006;113(17):2097–104.
  • Boström P, Mann N, Wu J, Quintero P a, Plovie ER, Gupta RK, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143(7):1072–83.
  • J M, Lu J-R, Antos C, Markham B, Richardson J, Robbins J, et al. A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy. Cell. 1998;93(2):215–28.
  • Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. GENES Dev. 1998;12:2499–509.
  • Gollnick PD, Armstrong RB, Saltin B, Saubert CW, Sembrowich WL, Shepherd RE. Effect of training composition on enzyme activity and fiber of human ske 1 eta1 muscle. J Appl Physiol. 1973;34(1).
  • Rooij E Van, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson A, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. 2009;17(5):662–73.
  • Chin ER. Role of Ca2 /calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol. 2005;99:414–23.
  • Rose AJ, Kiens B, Richter EA. Ca 2+ -calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol [Internet]. 2006;574(3):889–903. Available from: http://doi.wiley.com/10.1113/jphysiol.2006.111757
  • Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab [Internet]. 2013;17(2):162–84. Available from: http://dx.doi.org/10.1016/j.cmet.2012.12.012
  • Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–84.
  • Wu H, Kanatous S, Thurmond F, Gallardo T, Isotani E, Bassel-Duby R, et al. Regulation of Mitochondrial Biogenesis in Skeletal Muscle by CaMK. Science (80- ). 2002;296:349–52.
Kategorien
Ernährung Fitness

Diät-Pausen – Der Booster für den Fettabbau?

Sind Diät-Pausen für den Fettabbau förderlich? – Wie effizient ist diese Form der Nahrungsaufnahme?

In der heutigen Zeit gibt es immer mehr übergewichtige Leute. Viele setzen dann für den Fettabbau auf Diäten. Diät-Pausen sind anscheinend förderlich für den Fettabbau.

Worauf kommt es an, wenn wir Fett abbauen möchten?

Die Hauptkomponente der Gewichtsabnahme ist die Energiebilanz (Energieaufnahme – Energieverbrauch). Wenn die Energiebilanz negativ ist, wird das Körpergewicht verringert und möglicherweise Körperfett abgebaut. Wenn jedoch das Körpergewicht sinkt, sinkt in der Regel der Energieverbrauch ebenfalls. Die Verringerung des Energieverbrauchs erklärt sich teilweise durch eine Verringerung des Körpergewichts.

Die Verringerung des Energieverbrauchs kann jedoch nicht vollständig durch den Gewichtsverlust allein erklärt werden. Es gibt zusätzlich metabolische Anpassungen, die anscheinend dazu beitragen. Diese Anpassung wird als adaptive Thermogenese bezeichnet.

Diät-Pausen – Was sagt eine aktuelle Studie über diese adaptive Thermogenese aus?

Es wurde in der aktuellen Studie angenommen, dass die adaptive Thermogenese minimiert werden könnte, indem „Pausen“ während der Diätperiode eingelegt werden.

Das Studiendesign

Eine Gruppe (Gruppe 1) machte 16 Wochen lang eine Diät. Die Teilnehmer haben damit 33% weniger Kalorien zu sich genommen. Die andere Gruppe (Gruppe 2) machte ebenfalls 16 Wochen lang eine Diät, in denen sie 33% weniger Kalorien konsumierten. Jeweils nach zwei Wochen Diät machte die Gruppe 2 jedoch eine zweiwöchige Pause, in der sie die Kalorienmenge für eine ausgeglichene Energiebilanz (Diät-Pause) einnahm. Die Gesamtdauer der Diät von Gruppe 2 war daher 30 Wochen, aber das gesamte kalorische Defizit in diesen Wochen war das Gleiche wie bei der Gruppe 1.

Die Gruppe 2 (Gruppe mit Diät-Pausen) verlor mehr Fettmasse im Vergleich zur Gruppe 1 (ohne Diät-Pausen/12,3 gegenüber 8,0 kg), während der Verlust an Magermasse (v. a. Muskelmasse) zwischen den Gruppen ähnlich war (1,8 vs 1,2 kg). Die Gewichtsveränderung während der Diät-Pausen war nahezu gleich Null (0,0 ± 0,3 kg Körpergewicht). Die Unterschiede im Fettverlust traten daher während der Diätperioden auf.

Die Verringerung des Ruheenergieverbrauchs (Grundumsatz) war damit in der Gruppe mit den Diät-Pausen geringer, was darauf hindeutet, dass die Diät die adaptive Thermogenese effektiv dämpft.

Fazit der Diät-Pausen

Anscheinend können Diät-Pausen den Fettabbau erhöhen, indem sie teilweise der Senkung des Ruhenergieverbrauchs (Grundumsatz) während der Diät-Periode entgegenwirken.
Während die Gruppe mit Diät-Pausen mehr Fett abgebaut hat, war die Dauer der Diät fast doppelt so lang.

Nun könnte man natürlich argumentieren, dass eine Diät ohne Pausen für 30 Wochen bei einer Energiemenge von 33% unter dem Energieverbrauch demselben oder zu mehr Fettabbau führen würde. Natürlich wäre dann das gesamte Kaloriendefizit viel grösser und die Ernährung wäre aus mentaler Sicht deutlich anstrengender.

Quelle: https://www.ncbi.nlm.nih.gov/pubmed/28925405

Kategorien
Ernährung

Appetitzügler – wie sie gegen den Hunger wirken

Appetitzügler werden auch als Anorektika bezeichnet und sollen das Hungerempfinden beeinflussen. Dazu docken die enthaltenen Wirkstoffe an einer bestimmten Stelle im Gehirn – dem Hypothalamus – an. Diese Gehirnregion ist für die Steuerung des Hungergefühls verantwortlich. Der so verminderte Appetit soll zu einer reduzierten Aufnahme von Nahrung und dem Einsparen unnötiger Kalorien führen. Auch Heißhunger, der oft bei einer Diät auftritt, kann so bekämpft werden.

Wirkungsweise der Appetitzügler

Viele Appetitzügler wurden nicht wissenschaftlich getestet. Vielmehr handelt es sich um Präparate, deren Wirkung aus den Ursprungsländern der meist pflanzlichen Inhaltsstoffe überliefert wurde. In der Apotheke oder Drogerie sind solche natürlichen Appetithemmer erhältlich. Diese enthalten beispielsweise das koffeinreiche und stoffwechselanregende Guarana oder sattmachende Konjak-Extrakte. Letztere quellen im Magen auf, sodass durch die mageneigenen Dehnungsrezeptoren Sättigungsreize an das Gehirn gesendet werden. Appetitzügler können auch in Form von speziellen Gewürzen wie Chili oder Cayenne-Pfeffer regulierend auf den Appetit einwirken. Das Capasaicin aus den scharfen Würzmitteln ist gleichzeitig als Fatburner bekannt. Gegen Heißhunger helfen Inhaltsstoffe wie Zitronen- oder Grapefruitextrakte. Viele Abnehmwillige haben zudem mit Eiweißpulver zum Abnehmen Erfahrungen in Sachen Appetit zügeln sammeln können. Das reine Eiweiß sättigt, liefert aber weniger Kalorien als andere Lebensmittel und unterstützt daher eine Gewichtsreduktion. Zudem wird durch das Protein die Muskelaufbaurate gesteigert. dieser Prozess braucht zusätzliche Energie.

Nicht-pflanzliche Mittel als Appetitzügler

Neben Appetitzüglern mit pflanzlichen Inhaltsstoffe sind auch Mittel mit Phentermin oder Norephedrin erhältlich. Beide Stoffe sind leider in der Fitnessszene beliebt, da sie die Leistungsfähigkeit steigern. Beide Substanzen sind in der Schweiz verboten! Letzteres ist ein Botenstoff, der als Stresshormon agiert und eng mit Adrenalin verwandt ist. Er aktiviert den Sympathikus im Körper – die Stressachse – und bewirkt unter anderem, dass der Stoffwechsel hochfährt, körpereigene Energiereserven ausgeschüttet werden und der Appetit sinkt. Als Nebenwirkung können aber auch Bluthochdruck oder gar ein anaphylaktischer Schock auftreten. Man sollte daher die Finger von solchen Substanzen lassen.

Quelle: www.diaetpillen.org

Kategorien
Ernährung Fitness Gruppenfitness Kraft

Fett in Muskeln umwandeln – geht das?

Fett in Muskeln umwandeln – ist das wirklich möglich?

Immer wieder hört man im Fitnessstudio, dass es wichtig ist Krafttraining zu betreiben, damit man das Fett in Muskeln umwandeln kann. Noch lustiger wird es, wenn man von Trainierenden hört, dass sie sich zuerst Masse (damit ich vor allem Fettmasse gemeint) anfuttern müssen und dann das Fett in Muskeln umwandeln werden. Es hört sich ja gut an, leider ist es jedoch nicht möglich. Werfen wir doch auf einen Blick auf die Mechanismen hinter dem Muskelaufbau und dem Fettabbau, um dir zu erklären, warum diese Aussage in das Reich der Märchen gehört.

Wie werden Muskeln aufgebaut?

Muskeln unterliegen dem stetigen Auf- und Abbau. Auch jetzt (während dem Lesen des Textes) wird Muskelmasse auf- und abgebaut in deinem Körper. Wenn die muskelaufbauenden Prozesse überwiegen, wird Muskulatur aufgebaut. Überwiegen die muskelabbauenden Prozesse wird Muskulatur abgebaut.

Wie kann ich die muskelaufbauenden Prozesse anregen?

Es gibt zwei anabole (aufbauende) Stimuli für den Muskel. Das eine ist intensives Muskeltraining mit möglichst grosser Erschöpfung der Muskulatur in einer angemessenen Spannungsdauer von ca. 60 – 90 Sekunden pro Muskelfunktion. Das Zweite ist Protein (essentielle Aminosäuren). Neben deinen genetischen Voraussetzung entscheiden diese zwei Punkte über das Wachstum deiner Muskulatur.

Wie funktioniert der Prozess des Muskelaufbaus?

Wenn du Muskeln aufbauen möchtest, musst du die Muskelproteinsynthesegeschwindigkeit erhöhen. Die Muskelproteinsynthese ist der Prozess der Muskelproteinherstellung. Doch wie funktioniert die Muskelproteinsynthese.

Deine Muskelzellen haben mehrere Zellkerne, in welchen deine DNA gespeichert ist. Auf deiner DNA befindet sich der Bauplan deines Körpers. Wenn du nun deine Muskelzelle durch Krafttraining reizt, wird ein Abschnitt des Bauplans für eine neue Muskelzelle kopiert (diesen Prozess nennt man Transkription). Diese Kopie des DNA Abschnitts nennt man mRNA (für messenger RNA). Diese mRNA enthält nun die nötigen Informationen, um eine neue Muskelzelle zu produzieren. Die mRNA wandert dabei durch die Kernporen aus dem Zellkern und wird anschliessend an den Ribosomen in ein Protein übersetzt (diesen Prozess nennt man Translation). Bei der Translation wird die mRNA abgelesen und dabei werden die Aminosäuren gemäss Bauplan der mRNA zusammengesetzt. Um diesen Prozess auszuführen, müssen nun natürlich diese Aminosäuren in der richtigen Menge vorhanden sein. Nun ist auch klar, warum Muskelwachstum ohne Protein (Protein besteht aus Aminosäuren) eher schwierig wird.

Wird nun Fett in Muskeln umgewandelt oder wie wird Fett abgebaut?

Im Körper ist Fett als sogenannte Triglyceride (man liest oft auch Triacylglyceride) gespeichert. Dabei handelt es sich chemisch um ein Glycerol, welches mit 3 Fettsäuren verestert ist. Wie beim Muskelaufbau bzw. -abbau gibt es fettaufbauende sowie auch fettabbauende Prozesse.

Dieser Prozess wird vor allem über die Energiemenge gesteuert, welche eingenommen wird und über die Energiemenge, welche verbraucht wird. Wird mehr Energie eingenommen als verbraucht, so wird (höchstwahrscheinlich) die Menge an Energieüberschuss als Körperfett gespeichert. Wird jedoch mehr Energie verbraucht als eingenommen, so wird (höchstwahrscheinlich) Körperfett abgebaut.

Wie funktioniert der Prozess des Fettabbaus?

Um Fett abzubauen muss zuerst das Fett aus dem Fettgewebe gelöst werden. Dies geschieht über eine hydrolytische Spaltung des Naturalfetts in Gylcerin und 3 freie Fettsäuren (nennt man Lipolyse).

Die entstandenen Fettsäuren werden anschliessend in das Blut abgegeben. Diese Fettsäuren können von der Muskulatur anschliessend zur β-Oxidation (Abbau von Fettsäuren in den Mitochondrien zu Energie) oder von der Leber zur Ketogenese (Bildung von Ketonkörpern im Stoffwechselzustand des Kohlenhydratmangels) aufgenommen und verstoffwechselt werden. Kurzkettige Fettsäuren können sich dabei im Blut frei bewegen, während langkettige an Transportproteine gebunden werden. Das in der Lipolyse entstandene Glycerin wird ebenfalls von der Leber abgebaut und zur Gluconeogenese (Herstellung von Zucker) oder Fettsäuresynthese (Herstellung von Fett) herangezogen.

Kann man nun Fett in Musklen umwandeln?

Nun weisst du, dass beim Fettabbau-Prozess sicher keine Muskelmasse produziert wird. Man kann also Fett nicht in Muskeln umwandeln. Beim Fettabbau wird ganz einfach erklärt Naturalfett zu Energie. Beim Muskelaufbau werden Aminosäuren zu Muskelproteinen zusammensetzt. Dies sind zwei komplett unterschiedliche Prozesse.

Kategorien
Ausdauer Fitness Gruppenfitness

Anpassungen an das Ausdauertraining

Anpassungen an das Ausdauertraining.

Signalwege der Anpassungen an das Ausdauertraining

Welche Anpassungen an das Ausdauertraining können erwartet werden? Durch regelmässige, trainingsinduzierte Reize werden verschiedene Komponenten der Ausdauerfähigkeit verbessert. Diese Anpassungen finden einerseits zentral (Verbesserung des Herzminutenvolumens bzw. Verbesserung des Schlagvolumens) und andererseits peripher in der Arbeitsmuskulatur (Muskelfaserverteilung, Mitochondriendichte, Kapillarisierung) statt. Dabei ist vor allem zu beachten, dass die zentralen Adaptationen unabhängig vom gewählten Trainingsmittel verbessert werden, die peripheren Anpassungen dagegen vorwiegend in der ausdauertrainierten Muskulatur stattfinden. Aufgrund dessen sollte die Wahl des Trainingsmittels gut überlegt und vor allem dem individuellen Ziel angepasst sein.
Wie es durch die verschiedenen Arten des Ausdauertrainings zu spezifischen Anpassungen kommt und wie diese zum Teil, durch eine geeignete Wahl der Trainingsmethode, bewusst gesteuert werden können ist Teil der sportphysiologischen Forschung und wird hier in einem kurzen Überblick, für das grobe Verständnis zusammengefasst.

Nr. 1 der Anpassungen an das Ausdauertraining – Athletenherz oder pathologische kardiale Hypertrophie

Hauptkomponente der zentralen Anpassung durch Ausdauertraining ist eine vorwiegend strukturelle Veränderung des Herzmuskels. Diese Veränderungen können einerseits positiv (Athletenherz) und andererseits auch negativ (hypertrophe Kardiomyopathie) ausfallen. Beim Athletenherz vergrössert sich vorwiegend der linke Ventrikel und die Herzmuskelwand verdickt sich dazu im richtigen Verhältnis, was Netto zu einem vergrösserten Schlagvolumen führt (das Herz kann pro Schlag mehr Blutvolumen auswerfen).(1) Beim Herzkranken Patienten dagegen (z.B. durch eine Aortenstenose oder eine langjährige Hypertonie) nimmt die Wanddicke auf Kosten des Ventrikelvolumens stark zu (2), was schlussendlich zu einem verringerten Schlagvolumen führt und nach einer meist langjährigen Herzinsuffizienz, durch Versagen des Herzmuskels, im Herztod endet.
Wie zu erwarten führen zwei verschiedene molekulare Signalwege zu den erwähnten Anpassungen am Herzmuskel. Vor allem wiederholte Intervalle von intensiven Ausdauerbelastungen führen durch Erhöhung der Konzentrationen von PI3K und anschliessend PKB/Akt(3,4) und Erniedrigung des C/EBPbeta Signalweges(5) zu einer physiologischen Hypertrophie der Herzmuskelzellen. Die pathologische kardiale Hypertrophie dagegen beruht vorwiegend auf einem gesteigertem Calcineurin Signal.(6)
Vielleicht wird es früher oder später möglich sein, auf diese Signalwege mittels Medikamenten oder genetischen Methoden einen direkten Einfluss auszuüben. Sicher ist jedoch die Möglichkeit der Einflussnahme durch wiederholtes intensives Ausdauertraining oder das Beheben von den begünstigenden Faktoren für eine hypertrophe Kardiomyopathie (Blutdruckregulation, Aortenstenosenoperation usw.)

Nr. 2 der Anpassungen an das Ausdauertraining – Anpassungen in der Muskelfaserverteilung

Eine wichtige strukturelle Komponente auf muskulärer Ebene für die Ausdauerleistungsfähigkeit ist die Muskelfaserverteilung. Grundsätzlich lassen sich die menschlichen Skelettmuskelfasern in langsam kontrahierende Typ 1 und schnellkontrahierende Typ 2a (schnell) und Typ 2x (sehr schnell) Fasern einteilen. Die Namen dieser Einteilung basieren auf den schweren Myosinketten, welche vor allem in Skelettmuskelfasern exprimiert werden. Typ 2x Fasern exprimieren zum Beispiel vorwiegend schwere Myosinketten vom 2x Typ.
Es konnte diesbezüglich gezeigt werden, dass in Typ 1 Muskelfasern vorwiegend der Calcineurin-NFAT Signalweg induziert wird. Wird dieses Signal durch einen spezifischen Inhibitor abgeschwächt, verkleinert sich das Verhältnis der Typ1 zu den Typ2 Fasern.(7) Dieses Signal wird ausserdem durch langanhaltende elektrische Stimulation in Modellorganismen gesteigert, was einen Zusammenhang der Muskelfaserverteilung mit körperlichem Training indiziert. Zu den Typ 2 Fasern konnte einen durch Ausdauertraining induzierten Wechsel von Typ 2x auf Typ 2a Fasern gefunden werden, was eine leichte Verlangsamung auf Faserebene vermuten lässt. Insgesamt wird der Muskel durch trainingsinduzierte Reize natürlich nicht langsamer. Einen Wechsel von Typ1 auf Typ2 Fasern und umgekehrt kann theoretisch durch jahrelanges Training begünstigt werden, die Evidenz dafür ist jedoch sehr limitiert, was keine definitive Aussage ermöglicht.(8)
Was dagegen mit Sicherheit gezeigt werden konnte, ist das gegenseitige Unterdrücken der Genexpression der einzelnen schweren Myosinkettentypen untereinander. Dies erklärt die Tatsache, dass in einem gewissen Muskelfasertyp jeweils nur ein Typ der schweren Myosinketten exprimiert und alle anderen unterdrückt werden.(9)

Nr. 3 der Anpassungen an das Ausdauertraining – Trainingsinduzierte mitochondriale Biogenese

Regelmässiges Ausdauertraining führt mit der Zeit zu einer Erhöhung der Dichte an Mitochondrien im Muskel. Diese Anpassung wird mitochondriale Biogenese genannt und kann grundsätzlich mit zwei Signalwegen erklärt werden. Langanhaltendes langsames Ausdauertraining führt durch die Freisetzung von Kalzium zu einer Aktivierung von CaMK.(10–12) Während eines hochintensiven Intervalltrainings (HIIT) werden dagegen von AMPK die tiefen Konzentrationen von AMP und ADP registriert. Diese registriert ausserdem den Abfall des Glykogens.(13
AMPK und CaMK steigern die Expression des Transkriptionsfaktors PGC-1alpha, welcher seinerseits mittels Expressionssteigerung der nukleären und mitochondrialen DNA die mitochondriale Biogenese verbessert.(14)

Nr. 4 der Anpassungen an das Ausdauertraining – Trainingsinduzierte Angiogenese

Ein leistungslimitierender Faktor in Ausdauersportarten ist wie bereits beschrieben neben der maximalen Sauerstoffaufnahme auch die periphere Sauerstoffverwertung. Diesbezüglich ist vor allem die Dichte des muskulären Kapillarnetzes von zentraler Bedeutung.
Über den CaMK/AMPK-PGC-1alpha Signalweg, hypoxieinduziertes-HIF-1 und scherstressinduziertes-NO werden angiogene Wachsumsfaktoren (fördern das Kapillarwachstum) heraufreguliert. Einer der wichtigsten dieser Faktoren ist VEGF (vascular endothelial growth factor).
Ausserdem wird durch Ausdauertraining die Expression von Metalloproteinasen gesteigert, welche die extrazelluläre Matrix für ein Aussprossen der Kapillaren, durch das Bilden von Tunnels vorbereiten.(15)

Gib Gas und hol dir die Anpassungen an das Ausdauertraining!

Quellen:

  1. Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W. Athlete’s heart: Right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol. 2002;40(10):1856–63.
  2. Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol Ther [Internet]. 2010;128(1):191–227. Available from: http://dx.doi.org/10.1016/j.pharmthera.2010.04.005
  3. Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T, Franke TF, et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol. 2002;22(8):2799–809.
  4. DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, et al. Akt1 is required for physiological cardiac growth. Circulation. 2006;113(17):2097–104.
  5. Boström P, Mann N, Wu J, Quintero P a, Plovie ER, Gupta RK, et al. C/EBPβ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell. 2010;143(7):1072–83.
  6. J M, Lu J-R, Antos C, Markham B, Richardson J, Robbins J, et al. A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy. Cell. 1998;93(2):215–28.
  7. Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. GENES Dev. 1998;12:2499–509.
  8. Gollnick PD, Armstrong RB, Saltin B, Saubert CW, Sembrowich WL, Shepherd RE. Effect of training composition on enzyme activity and fiber of human ske 1 eta1 muscle. J Appl Physiol. 1973;34(1).
  9. Rooij E Van, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson A, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. 2009;17(5):662–73.
  10. Chin ER. Role of Ca2 /calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol. 2005;99:414–23.
  11. Rose AJ, Kiens B, Richter EA. Ca 2+ -calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol [Internet]. 2006;574(3):889–903. Available from: http://doi.wiley.com/10.1113/jphysiol.2006.111757
  12. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab [Internet]. 2013;17(2):162–84. Available from: http://dx.doi.org/10.1016/j.cmet.2012.12.012
  13. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–84.
  14. Wu H, Kanatous S, Thurmond F, Gallardo T, Isotani E, Bassel-Duby R, et al. Regulation of Mitochondrial Biogenesis in Skeletal Muscle by CaMK. Science (80- ). 2002;296:349–52.
  15. Haas TL, Milkiewicz M, Davis SJ, Zhou a L, Egginton S, Brown MD, et al. Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol. 2000;279(4):H1540–7.
Kategorien
Fitness Kraft

Sportwissenschaftliche und Naturwissenschaftliche Forschung. Wo liegt der Unterschied?

Sportwissenschaft und Naturwissenschaftliche Forschung. Wo liegt der Unterschied?

In der heutigen Zeit gibt es unzählige unterschiedliche Trainingsempfehlungen. Jeder behauptet in der Regel, dass seine Trainingsmethoden die Beste sei.  Wie kommt dieses Wissen zu Stande? Was untersucht die sportwissenschaftliche und was die naturwissenschaftliche Forschung? Wir klären auf.

Egal ob Trainer, Ausbildner oder erfahrene Sportler, Fachpersonen aus dem Bereich des Trainings verweisen immer wieder gerne darauf, dass die eigenen Trainingsprinzipien wissenschaftlich fundiert sind und auf Forschungsergebnissen basieren. Grundsätzlich ist dem nichts entgegenzusetzen. Da sich die Aussagen der Fachpersonen jedoch häufig widersprechen, stellt sich die Frage der Richtigkeit.
Wie kann es sein, das so viele, zum Teil entgegengesetzte wissenschaftliche Daten existieren? Nun, in erster Linie sollte zwischen Erfahrungswissen und Studienwissen unterschieden werden.

Erfahrungswissen

Erfahrungswissen einerseits ist Wissen, welches sich aus der Praxis heraus entwickelt. Dazu gehören beispielsweise Übungsreihenfolgen oder Kombinationen von Bewegungsabfolgen, die ein Trainer aufgrund seiner Erfahrung und seines Wissens (welches durchaus auch studienbasiert sein kann) entwickelt hat und welche er bei erfolgreichen Athleten einsetzt. Ein Beispiel hierfür ist beispielsweise die Kombinationen aus sportartunspezifischen Muskelübungen wie Kniebeugen, Sprüngen und sportartspezifischen Bewegungsabläufen wie z.B. Sprints innerhalb einer Trainingseinheit. Solche Kombinationen haben einen direkten Praxisbezug und werden oft von Athleten ausgeführt.

Studienwissen

Andererseits ist Studienwissen Wissen, welches aus der Forschung stammt und im Rahmen wissenschaftlicher Studien erarbeitet wurde. Ein Beispiel hierfür sind beispielsweise die Signalkaskaden der Zellbiologie/Biochemie, welche die molekularen Anpassungen an Ausdauer- oder Muskeltraining beschreiben. Solche Erkenntnisse haben auf den ersten Blick keinen direkten Praxisbezug, legen aber die biologischen Richtlinien fest, anhand derer ein Training im Optimalfall aufzubauen ist.

In Bezug auf das Studienwissen muss aber weiter unterschieden werden.

  • Handelt es sich dabei um Wissen, welches aus der sportwissenschaftlichen Forschung stammt?
  • Oder sind die Studien naturwissenschaftlicher Art?
  • Wurden die Daten in wissenschaftlichen Fachzeitschriften mit Qualitätssicherung publiziert?
  • Oder handelt es sich um einfache Untersuchungen wie z.B. Semesterarbeiten, die zwar interessant und informativ sind, jedoch häufig methodologischen Kriterien nicht gerecht werden?

All diese Punkte sollten beim Zitieren von Wissen berücksichtigt werden. Grundsätzlich sollten die Begriffe „Forschung“ und „wissenschaftlich“ nur verwendet werden, wenn die Untersuchungen den grundlegenden Qualitätskriterien für Studien gerecht werden und in Fachzeitschriften (z.B. Journal of Applied Physiology) veröffentlicht wurden.

Worin unterscheiden sich nun aber sportwissenschaftliche Forschung und naturwissenschaftliche Trainingsforschung?

Die Unterscheidung ist häufig nicht ganz so einfach und es existiert keine fixe Trennlinie. Vereinfacht gesagt kann man die beiden Forschungsbereiche aber folgendermassen abgrenzen.

Naturwissenschaftliche Forschung

Naturwissenschaftliche Trainingsforschung untersucht die grundlegenden Zusammenhänge innerhalb des Körpers im Kontext von „Exercise“/physischer Belastung (z.B. wie Muskelwachstum tatsächlich zustande kommt) und bedient sich der Methoden der modernen Naturwissenschaften (häufig sehr komplex und teilweise invasiv). Gleichzeitig vewendet sie ausschliesslich Begriffe und Grössen, die auf dem SI-System beruhen (also z.B. Kraft in Newton, Leistung in Watt, Geschwindigkeit in Metern pro Sekunde, etc.) und verzichtet auf beschreibende Grössen wie z.B. Kraftausdauer. Die naturwissenschaftliche Trainingsforschung legt somit quasi den Rahmen für die Trainingsmethoden fest. Ein Beispiel für naturwissenschaftliche Forschung ist wie bereits oben dargelegt die Untersuchung der intrazellulären Signalkaskaden während oder nach Ausdauertraining (wie reagieren meine Muskelzellen auf Energiestress?). Die Vorteile dieser Forschung sind u.a. klar definierte Effekte und unmissverständliche Aussagen. Der Hauptnachteil liegt in der nicht immer direkt ersichtlichen Praxisrelevanz.

Sportwissenschaftliche Forschung

Klassische sportwissenschaftliche Forschung hingegen bedient sich in der Regel einfacherer Methoden und untersucht die Ursachen der körperlichen Anpassungen nicht. Sie beschreibt beobachtete Effekte und versucht, diese im Kontext der Trainings- oder Sportpraxis einzuordnen. Ein Beispiel hierfür ist der Vergleich von zwei Arten von Muskeltraining in Bezug auf die Endgeschwindigkeit bei einem Sprint, wobei die verwendeten Methoden eher einfach sind. Anders als bei der naturwissenschaftlichen Trainingsforschung verwendet die sportwissenschaftliche Forschung beschreibende und deshalb häufig unklar definierte Begriffe wie Kraftausdauer, Maximalkraft oder Explosivkraft. Die Ergebnisse der sportwissenschaftlichen Forschung sind vermeintlich unmittelbar auf die Trainings- und Sportpraxis übertragbar.

Vereinfacht gesagt, sorgt die Naturwissenschaft für das Grundverständnis in Bezug auf die körperlichen Anpassungen und die Sportwissenschaft beschreibt sportartbezogen die Effekte von Training. Wie aber bereits erwähnt, ist eine klare Abgrenzung der Forschungsbereiche schwierig, da heutzutage vermehrt naturwissenschaftliche Methoden Einzug in die Sportwissenschaft halten, was die Qualität der „Studien im Trainings- und Sportbereich“ stark verbessert.

Wichtig ist, dass beim Erarbeiten von Trainingsprinzipien zwingend die naturwissenschaftliche Forschung bzw. die naturwissenschaftlichen Fakten berücksichtigt werden. Nur so ist gewährleistet, dass die Empfehlungen wirkungsvoll und sicher sind.

Sportnahrung kaufen

Kategorien
Ernährung Kraft

Leucin, der Turbo für den Muskelaufbau?

Leucin, der Turbo für den Muskelaufbau?

Leucin ist eine Aminosäure und gehört zu den BCAA’s. BCAA’s sind verzweigtkettige Aminosäuren (Leucin, Isoleucin und Valin). Diese Aminosäuren sind somit für unsere Muskulatur wichtig und sind ein Bestandteil vieler tierischer sowie pflanzlicher Lebensmittel.

Leucin für den Muskelaufbau

Es wird angenommen, dass Leucin die Aminosäure ist welche massgeblich zur Steigerung der Muskelproteinsyntheserate beiträgt. Die Plasma Leucin-Konzentration korroliert nach  der Proteineinnahme mit der Muskelproteinsyntheserate (Pennings, 2011) . Dies stützt daher die Annahme, dass der Leucingehalt einer Protein-Portion entscheiden für den anabolen Effekt einer Proteinquelle ist. Neben der Aminosäure Leucin spielen jedoch auch noch andere Aminosäuren eine wichtige Rolle.

Die Wirkung einer Leucin Supplementierung

Folgende Studie (Churchward-Venne, 2014) zeigt die Muskelproteinsyntheseraten mit fünf unterschiedlichen Proteingetränken:

  • 6,25 g Whey Protein
  • 6,25 g Whey Protein mit 2,25 g Leucin (insgesamt 3 g Leucin)
  • 6,25 g Whey Protein mit 4,25 g Leucin (insgesamt 5 g Leucin)
  • 6,25 g Whey Protein mit 6 g BCAA (4,25 g Leucin, 1,38 g Isoleucin für und 1,35 g Valin)
  • 25 g Whey Protein (insgesamt 3 g Leucin)

Leucin

Alle fünf Getränke erhöhten die Muskelproteinsyntheserate. Wie erwartet, erhöhte die 25 g Dosis an Whey Protein die Muskelsynstheserate mehr als nur 6,25 g Whey Protein. Die Zugabe von 2,25 g Leucin erhöhte die Muskelproteinsyntheserate nicht weiter. Die 6,25 g Whey Protein und die 2,25 g Leucin haben den gleichen gesamt Leucingehalt wie 25 g Whey Protein. Die Menge an Leucin bestimmt somit die Muskelproteinsyntheserate nicht allein. 4,25 g Leucin zu den 6,25 g Whey Protein erhöhte die Muskelproteinsynthese weiter. Dies ergab eine ähnliche Rate wie bei 25 g Whey Protein.

BCAA verhindert die Wirkung auf die Muskelproteinsyntheserate

Intressanterweise verhindert die Zugabe von 6 g BCAA (verzweigtkettige Aminosäuren) die positive Wirkung von Leucin auf Muskelproteinsynthese. Isoleucin, Leucin und Valin verwenden den gleichen Transporter für die Aufnahme in den Darm. Es wird daher spekuliert, dass Leucin, Isoleucin und Valin um die Aufnahme konkurrieren. Dies führt wiederum zu einem weniger schnellen Leucin Anstieg. Die Geschwindigkeit des Leucin-Anstiegs ist jedoch anscheinend ein wichtiges Kriterium für die höhe Muskelproteinsyntheserate.

Der Leucingehalt ist bei der Dosierung von Protein also ein wichtiges Kriterium. Pflanzliche Proteine enthalten in der Regel kleinere Mengen, daher sollten bei diesen Proteinquellen höher Mengen eingenommen oder mit Leucin-Pulver ergänzt werden um einen besseren Effekt auf die Muskelproteinsyntheserate zu erzielen.
Quellen:
  • Pennings, Bart; Boirie, Yves; Senden, Joan M. G.; Gijsen, Annemie P.; Kuipers, Harm; van Loon, Luc J. C. (2011): Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. In: The American journal of clinical nutrition 93 (5), S. 997–1005. DOI: 10.3945/ajcn.110.008102.
  • Churchward-Venne, Tyler A.; Breen, Leigh; Di Donato, Danielle M.; Hector, Amy J.; Mitchell, Cameron J.; Moore, Daniel R. et al. (2014): Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men. A double-blind, randomized trial. In: The American journal of clinical nutrition 99 (2), S. 276–286. DOI: 10.3945/ajcn.113.068775.
Kategorien
Fitness Kraft

Signalwege der muskulären Adaption durch Krafttraining

Welche Signalwege führen zur muskulären Adaption durch Krafttraining?

Krafttraining steigert kombiniert mit der Aufnahme von Nahrungsprotein mittels verschiedener Signalwege die Muskelproteinsynthese und verbessert so den Muskelaufbau. Auch wenn noch nicht sämtliche Einflussfaktoren und Signalwege der Adaption durch Krafttraining erforscht wurden, kann die Massezunahme des Skelettmuskels zu einem grossen Teil beschrieben werden. Drei Signalwege werden mit der Informationsübertragung im Muskelaufbau in Verbindung gebracht.

1. mTor Signalkaskade

mTor steht für mammalian/mechanistic target of rapamycin, was mit der Proteinsynthese nichts zu tun hat, sondern den Einfluss vom Immunsuppressivum Rapamycin auf das Enzym beschreibt. Es ist eine Serin/Threonin Kinase, was bedeutet, dass es an den Aminosäuren Serin und Threonin kleine Modifikationen (Phosphorylierungen) begünstigt, welche für die Informationsübertragung mittels Signalkaskade sehr wichtig sind. Die Aktivierung von mTor ist höchst Komplex und wird in diesem Rahmen nicht genauer besprochen. Es soll jedoch gesagt sein, dass die mechanische Belastung der Muskelfasern einen indirekt positiven Einfluss auf das mTor hat, während Ausdauertraining über die Aktivierung von AMPK einen negativen Effekt hervorrufen kann. Wie die mechanische Belastung von der Muskelzelle registriert wird und welche Mechanosensoren dafür verantwortlich sind bleibt Gegenstand der aktuellen Forschung und womöglich eine der wichtigsten unbeantworteten Fragen in diesem Wissenschaftsbereich.

mTor reguliert die Proteinsynthese an drei verschiedenen Stellen und daher eine wichtigen Stellenwert in der Adaption an Krafttraining. Einerseits verbessert es die mRNA Translation am Ribosom und beschleunigt so den Syntheseprozess. (erhöhte Geschwindigkeit). Andererseits erhöht es die Kapazität der einzelnen Zelle für die Synthese, in dem es die Ribosom Biogenese erhöht. (erhöhte Kapazität). Ausserdem hat mTor in einigen Zellen einen inhibierenden Einfluss auf den Proteinabbauprozess namens Autophagie (weniger Abbau). Nebst dem direkten Einfluss auf die Synthesegeschwindigkeit und –kapazität hat das Enzym auch einen indirekten Effekt mittels Modifikation der Zellteilung und Gentranskription gewisser Gene (mehr Zellteilung und vermehrte Gentranskription)

2. Myostatin-Smad Signalkaskade

Nach diversen intra- und extrazellulären Modifikationen führt Myostatin zu einer Aktivierung von Smad und resultiert in einer Wachstumsinhibition. Im Gegensatz zum mTor verlangsamt also der Myostatin-Smad Signalweg das Skelettmuskelwachstum. In Tiermodellen wurde die Myostatinaktivität modifiziert oder sogar gestoppt, was zu einer Skelettmuskulatur in doppelter Ausprägung im Vergleich zum wildtyp geführt hat.  Eine wichtige Frage wäre nun, ob die zusätzliche Muskelmasse auch zu einem adäquaten Gewinn an zusätzlicher Kraft führt. Diese Frage konnte mittels zufälliger Genmutanten beantwortet werden. Die zusätzliche Muskelmasse resultiert zwar in einem Kraftzuwachs, die reduzierte muskuläre Effizienz führte jedoch zu einer kleineren relativen Kraft im Vergleich mit der Gesamtmasse des Individuums. Dies zeigt, dass ein unlimitiertes Skelettmuskelwachstum auch zu einem Nachteil für die individuelle Fitness führen kann und erklärt die Relevanz des Myostatins für die menschlichen Regulationsprozesse.

Es konnte gezeigt werden, dass Krafttraining das mRNA Level von Myostatin senkt und somit der Einfluss auf das Muskelwachstum erklärt werden kann. In welcher Form und in welchem Ausmass dieser Effekt einen Einfluss auf die Anpassungsreaktionen nach dem Krafttraining hat, konnte noch nicht vollständig geklärt werden.

3. Regulation des Satellitenzellverhaltens

Ausdifferenzierte Skelettmuskelzellen haben ihre Teilungsfähigkeit bereits verloren und können somit die Reparatur und den Ersatz von verletzten Muskelzellen nicht gewährleisten. Diese Aufgabe wurde auf die Satellitenzellen übertragen, welche eine Art Stammzellen des Muskels darstellen. Diese Zellen befinden sich im Muskel in der Peripherie zwischen Plasmamembran und Basallamina.

Es konnte gezeigt werden, dass trotz nahezu kompletter Entfernung der Satellitenzellen (über 90%) noch eine normale Muskuläre Anpassung mittels Hypertrophie möglich ist. Dies beweist, dass die Satellitenzellen auf die kurzfristige Muskelhypertrophie keinen Effekt haben. 8 Wochen später war die Hypertrophie jedoch stark reduziert, was bedeutet, dass für den langfristigen Erhalt der gewonnenen Muskulatur die Satellitenzellen unabdingbar sind. Ausserdem sind sie essentiell für das muskuläre Wachstum nach der Geburt und die Regeneration nach Verletzungen.

Adaption durch Krafttraining – Interpretation der wissenschaftlichen Erkenntnisse

Viele weitere, ungenannte wissenschaftliche Erkenntnisse tragen zu einem besseren Verständnis in der Muskelplastizität bei. Mittels verschiedener Methoden wurden von Muskelbiologen weitere, für das Muskelwachstum relevante Informationen, wie die optimale Belastungs- und Erholungsdauer oder Bewegungsgeschwindigkeit gesucht. Zusammenfassend gibt es jedoch nicht viele Regeln, welche es zu befolgen gilt, um einen maximalen Output bei minimalem Aufwand zu erreichen. Einer der zentralsten Faktoren beim Krafttraining ist die Muskelermüdung und die damit einhergehende Rekrutierung von sämtlichen, für die motorische Bewegungsaufgabe spezifischen, motorischen Einheiten. Mit zunehmender Ermüdung nimmt nämlich die Anzahl rekrutierter motorischer Einheiten und somit die Anzahl aktivierter Muskelfasern zu. Dies stellt eine wichtige Voraussetzung für die Steigerung der Muskelproteinsynthesegeschwindigkeit dar.

Ein weiterer zentraler Faktor ist die langsame Bewegungsausführung. Sie steigert den Muskelproteinaufbau mehr als bei schneller Bewegungsausführung. Die Übungen sollen daher innerhalb der vorgegebenen Spannungsdauer jeweils bis zur Erschöpfung resp. Ermüdung, d.h. bis keine vollständige, anatomisch korrekte Wiederholung über das individuell mögliche Bewegungsausmass mehr möglich ist, ausgeführt werden. Die dafür benötigte Spannungsdauer (von Beginn bis Ende der Übung) sollte in einem sinnvollen Bereich, zwischen 30 und 180 Sekunden, liegen.

Neben dem Training ist die optimale Proteinzufuhr entscheidend für die Adaptation durch Kraftraining. Optimal wäre die Einnahme von ca. 20 g hochwertigem Protein pro Portion ca. alle 3 – 4 Stunden.

Go for it!

Quellen

Wackerhage H. Molecular Exercise Physiology. Abingdon: Routledge; 2014. 24-30, 52-65, 133-151 p.

McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, et al. Effective fiber hyperthrophy in satellite cell-depleted skeletal muscle. Development [Internet]. 2011 [cited 2017 Nov 15];138:3657–66. Available from: http://dev.biologists.org/content/develop/138/17/3657.full.pdf

Sportnahrung kaufen

Kategorien
Ernährung Fitness Kraft

Was ist Eiweiss bzw. Protein? Brauche ich das für den Muskelaufbau?

Was ist Eiweiss bzw. Protein und wofür braucht man das?

Eiweiss, in der Fachsprache Proteine genannt, sind organische Verbindungen, die wie Kohlenhydrate und Fette die Elemente Kohlenstoff (C), Wasserstoff (H) und Sauerstoff (O), zusätzlich aber noch Stickstoff (N) enthalten. In einigen Eiweissen kommt darüber hinaus noch Schwefel (S) vor. Die Eiweisse bestimmen somit in entscheidendem Mass die Funktion und Struktur des menschlichen Körpers.

Eiweiss der Baustoff der Zellen

Proteine sind ein unentbehrlicher Baustoff der menschlichen Zellen: Sie sind auf unterschiedlichste Art und Weise an zahlreichen Stoffwechselvorgängen beteiligt. Gewisse Eisweissbaustoffe besitzen daher zudem Signalfunktionen, welche im Körper bei genügend hoher Konzentration Stoffwechselvorgänge auslösen. Die Bausteine der Eiweisse heissen Aminosäuren. Diese sind in einem Eiweiss kettenartig angeordnet; diese Ketten bilden wiederum dreidimensionale Strukturen, welche sich
zu grösseren Einheiten zusammenlagern können. Je nach Anzahl der Aminosäuren, aus denen ein Eiweiss besteht,  unterscheidet man daher Oligopeptide mit weniger als zehn Aminosäuren, Polypeptide, die sich aus 10 – 100 Aminosäuren zusammensetzen, und Proteine mit mehr als 100 Aminosäuren.

Die Abfolge der Aminosäuren zur Herstellung der Eiweisse ist in den Genen (auf der DNS) gespeichert. Ein Protein ist somit nichts anderes als ein in eine andere Sprache  «Aminosäurensprache») übersetztes Gen. Theoretisch können unendlich viele Proteine gebildet werden, da die Aminosäuren beliebig kombiniert und aneinandergereiht werden können. Der Mensch produziert hingegen «nur» 30 000 Proteine, die eine Vielzahl an Funktionen im Körper ausüben. Im menschlichen Organismus werden für die Proteinsynthese 20 verschiedene Aminosäuren benötigt. Neun davon sind essenziell. Diese können vom Körper nicht selbst hergestellt werden und müssen daher mit der Nahrung in ausreichender Menge zugeführt werden.

Vorkommen von Eiweiss

Fleisch, Fisch, Milch und Milchprodukte sowie Eier sind Proteinquellen tierischen Ursprungs, Getreide- und Sojaprodukte, Hülsenfrüchte und Nüsse hingegen pflanzliche Quellen. Pflanzliche Proteinquellen liegen in Bezug auf den biologischen Wert
(siehe unten) niedriger als tierische Eiweisse.

Funktionen von Eiweiss im Körper

Eiweiss kommt im menschlichen Organismus vor als Bestandteil von:

  • Hormonen (z. B. Insulin)
  • Enzymen (z. B. Citratsynthase)
  • Membranproteinen der Zellwand (z. B. Rezeptoren oder Transportproteine)
  • Stütz- und Gerüsteiweissen (z. B. Kollagen, Keratin oder Elastin)
  • Kontraktilen Proteinen (z. B. Aktin- und Myosin)
  • Plasmaeiweissen (z. B. Albumin)
  • Transporteiweissen (z. B. Hämoglobin und bestimmte Plasmaproteine)
  • Blutgerinnungsfaktoren (z. B. Fibrinogen)
  • Antikörpern (z. B. Immunglobulin A).

Bei der Energieversorgung nur Reservefunktion Bei der Energieversorgung hat Eiweiss nur in Ausnahmefällen eine Bedeutung (z. B. bei sehr niedriger Energiezufuhr, tiefer Kohlenhydratezufuhr oder bei mehrstündiger Ausdauerbelastung).

Täglicher Bedarf an Eiweiss

Bei inaktiven Menschen liegt der Proteinbedarf bei mind. 0,8 g/kg Körpergewicht. Der Bedarf an Proteinen bei Sportler/innen sowohl im Kraft- wie auch im Ausdauersportbereich ist höher und liegt damit unabhängig von der Sportart bei etwa 1,2-2,0 g/
kg Körpergewicht täglich. Ist der Bedarf gedeckt, bringt eine noch höhere Proteinzufuhr keine Vorteile mit sich. Jedoch kann mit einem optimalen Einnahmetiming die Proteinsyntheserate maximiert werden, was sich damit positiv auf die Adaptation
an Trainingsreize auswirkt (z. B. Aufbau von Muskelmasse).

Eiweiss und die Proteinbilanz

Alle Gewebe unseres Körpers bestehen zu einem grossen Teil aus Protein (Eiweiss). Dieses (und somit auch unser Gewebe, wie z.B. die Muskulatur, die Haut, die Haare, das Bindegewebe etc.) unterliegt permanenten Auf- und Abbauprozessen, sodass unser Körper unaufhörlich mit frischen Baustoffen versorgt werden muss. Die für den Gewebeaufbau notwendigen Baustoffe heissen Aminosäuren, welche unser Körper bei der Verdauung aus Nahrungsproteinen gewinnt. Das Verhältnis zwischen dem Auf- und Abbau der Körperproteine nennt man Proteinbilanz. Änderungen im Proteinauf- und abbau werden sowohl durch Training, als auch durch die Ernährung ausgelöst. Diese Änderungen führen dazu, dass die Proteinbilanz in Abhängigkeit der Trainings- und/oder Ernährungsmassnahmen innert kürzester Frist erhöht oder reduziert wird und du im Endeffekt netto
Proteinmasse auf- (positive Proteinbilanz) oder abbauen (negative Proteinbilanz) kannst.

Tipps für eine positive Proteinbilanz:

  • Konsumiere nach dem Training ca. 20 g Protein. Grössere Mengen bringen keinen zusätzlichen Nutzen sondern fördern den Proteinabbau.
  • Nimm alle 3 – 5 Stunden eine Portion Protein (ca. 20 g) zu dir. Dies auch an Tagen an denen du nicht trainierst.
  • Achte auf hochwertige Proteinquellen. Dies wären zum Beispiel ein reines Molkenprotein oder eine Fleischquelle (z. B. Poulet, Rindsfilet, Lachs). Wenn du kein Molkenprotein oder Fleisch konsumieren möchtest, ergänze dein pflanzliches Protein mit der essenziellen Aminosäure L-Leucin.
  • Verzichte auf milbasierte (unter Umständen massiv gezuckerte) UHT-Fertigshakes. Rühre dein Molkenprotein mit Wasser an oder trink einen wasserbasierten Whey-Drink.

Hochwertige Protein finden Sie hier.

Protein